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ABSTRACT. Let R be a commutative ring with 1 such that Nil(R) is a
divided prime ideal of R. Then R is called a ¢-chained ring if for every
z,y € R\ Nil(R) either z | y or y | z. Also, R is called a ¢-pseudo valuation
ring if for every #,y € R\ Nil(R) either = | y or y | 2m for each nonunit
m € R. We show that a quasi-local ring R with maxima) ideal M containing
a nonzerodivisor of R is a ¢-pseudo valuation ring iff M : M is a ¢-chained
ring. We show that a ¢-pseudo-valuation ring is a pullback of a ¢-chained
ring. Also, we show that for each n > 1 there is a ¢-chained ring of Krull
dimension n that is not a chained ring.

1. INTRODUCTION

We assume throughout that all rings are commutative with 1 # 0. We begin
by recalling some background material. As in [12], an integral domain R, with
quotient field K, is called a pseudo-valuation domain (PVD) in case each prime
ideal P of R is strongly prime, in the sense that zy € Pz € K,y € K implies
that either z € P or y € P. In [5], Anderson, Dobbs and the author generalized
the study of pseudo-valuation domains to the context of arbitrary rings (possibly
with nonzero zerodivisors). Recall from [5] that a prime ideal P of R is said to
be strongly prime (in R) if aP and bR are comparable (under inclusion) for all
a,b € R. A ring R is-called a pseudo-valuation ring (PVR) if each prime ideal of
R is strongly prime. A PVR is necessarily quasilocal [5, Lemma 1(b)]; a chained
ring is a PVR [[5], Corollary 4]; and an integral domain is a PVR if and only if
it is a PVD (cf. [1, Proposition 3.1}, [2, Proposition 4.2], and [6, Proposition 3]).
Recall from [7] and [10] that a prime ideal P of R is called divided inclusion) to
every ideal of R. A ring R is called a divided ring if every prime ideal of R is
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divided. In [8], the author gives another generalization of PVDs to the context
of arbitrary rings (possibly with nonzero zerodivisors). Recall from [8] that for a
ring R with total quotient ring T(R) such that Nil(R) is a divided prime ideal
of R, let ¢ : T(R) — K := Rp;(g) such that ¢(a/b) = a/b for every a € R and
every b € R\ Z(R). Then ¢ is a ring homomorphism from T'(R) into K, and ¢
restricted to R is also a ring homomorphism from R into K given by ¢(z) = z/1
for every z € R. A prime ideal Q of ¢(R) is called a K-strongly prime if zy € Q.
z € K,y € K implies that either z € Q or y € Q. If each prime ideal of ¢(R)
is K-strongly prime, then ¢(R) is called a K-pseudo-valuation ring (K-PVR). A
prime ideal P of R is called a ¢-strongly prime if #(P) is a K-strongly prime
ideal of ¢(R). If each prime ideal of R is ¢-strongly prime, then R is called a
¢-pseudo-valuation ring (¢ — PVR). It is shown in [8, Corollary 7(2)] that a
ring R is a ¢-PVR if and only if Nil(R) is a divided prime ideal and for every
a,b € R\ Nil(R), either a | bin R or b| ac in R for each nonunit ¢ € R. Also,
it is shown in [9, Theorem 2.6] that for each n > 0 there is a ¢-PVR of Krull
dimension n that is not a PVR.

In this paper, we introduce the new concept:¢-chained rings. We show that a
¢-chained ring is a ¢-pseudo-valuation ring. We show that for each n > 0 there
is a ¢-chained ring of Krull dimension n that is not a chained ring. Among other
results, we show that a ¢-pseudo- valuation ring is a pullback of a ¢-chained ring.

The following notation will be used throughout. Let R be a ring. Then T{R)
denotes the total quotient ring of R, Nil(R) denotes the set of nilpotent elements of
R, Z(R) denotes the set of zerodivisors of R, dim(R) denotes the Krull dimension
of R, Spec(R) denotes the set of all prime ideals of R, and if B is an R-module,
then Z(B) denotes the set of zerodivisors on B, that is, Z(B) = {zeR:2y=0
in B for some y # 0 and y € B}. If I is an ideal of R, then Rad(I) denotes the
radical ideal of I(inR). If Nil(R) is a divided prime ideal of R, then K denotes
the ring Ry (r) and ¢ denotes the ring homomorphism from T'(R) into K given
by ¢(a/b) = a/b for each a € R and for each b € R\ Z(R).

Remark. Observe that ¢(z) = z/1 for each z € R. Also, observe that by [8,
Proposition 3], K is quasilocal ring with maximal ideal Nil(¢(F)) = H(Nil(R)).
Hence, each z € K \ Nil(¢(R)) is a unit of K.

We summarize some basic properties of PVRs and ¢-PVRs in the following
proposition.

Proposition 1.1. (1) A PVR is a divided ring [5, Lemma 1].
(2) A ¢-PVR is a divided ring [8, Proposition 4].
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(3) An integral domain is a PVR iff it is a ¢-PVR iff it is a PVD( [, Propo-
sition 3.1], (2, Proposition 4.2], [6, Proposition 3], and [8]).

(4) A ring R is a PVR if and only if for every a,b € R, either a|b orb|ac
for every nonunit ¢ of R [5, Theorem 5].

(5) A ring R is a ¢-PVR if and only if Nil(R) is a divided prime ideal of R
and for every a,b € R\ Nil(R), either a|b in R or b | ac in R for every
nonunit ¢ € R.

(6) If R is a PVR or a ¢-PVR, then Nil(R) and Z(R) are divided prime
ideals of R ([5], [8]). Observe that if R is a ¢-PVR, then Nil(R) is a
divided prime ideal of R by the definition.

Our non-domain examples of ¢-chained rings are provided by the idealization
construction R(+)B arising from a ring R and an R-module B as in Huckaba [13,
Chapter VI]. We recall this construction. For a ring R, let B be an R-module.
Consider R(+)B = {(r,b) : 7 € R and b € B}, and let (r,b) and (s,c) be two
elements of R(+)B. Define :

(1) (nb)={(s,c)ifr=sand b=c.
(2) (r,b) + (s,¢) =(r+s,b+c).
(3) (r,b)(s,c) = (rs,bs + rc).

Under these definitions R(+)B becomes a commutative ring with identity. In

the following proposition, we state some basic properties of R(+)B.

Proposition 1.2. Let R be a ring, B be an R-module, and Z(B) be the set of
zerodivisors on B. Then:
(1) The ideal J of R(+)B 1is prime if and only if J = P(+)B where P 15 a
prime ideal of R. Hence, dim(R) = dim(R(+)B) [13, Theorem 25.1].
(2) (r,b) € Z(R(+)B) if and only if r € Z(RjU Z(B) [13, Theorem 25.3].
(3) (r,b) € R(+)B is a unit of R(+)B if and only if r is a unit of R [13,
Theorem 25.1].

2. ¢-CHAINED RINGS

Throughout this section R denotes a ring with 1 such that Nil(R) is a divided
prime ideal of R. We start this section with the following definition.

Definition 1. . For a ring R, we say that ¢(R) is a K-chained ring (K-CR) if
for each & € K \ ¢(R), we have ™% € ¢(R). If ¢(R) is a K-CR , then we say that
R is a ¢-chained ring (¢-CR).

Remark. (1) Observe that every chained ring is a ¢-chained ring.
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(2) Observe that an integral domain is a valuation domain (chained ring) iff
it is a ¢-chained ring.
(3) Observe that K is a K-CR.

We recall the following result.

Lemma 2.1. [8, Proposition 3(3)]. Let z € K and write = a/b for some a € R
and for some b € R\ Nil(R). Then z € ¢(R) if and only if b| a in R.

Proposition 2.2. A ring R is a ¢-CR if and only if for every a,b € R\ Nil(R),
either a | bin R or b | a in R. Hence, if R is a ¢-CR and z € T(R) \ R, then
z"l' € R.

PROOF. Suppose that R is a ¢-CR, and let a,b € R\ Nil(R) such that a /b in
R. Hence, b/a € K \ ¢(R) by Lemma 2.1. Thus, a/b € ¢(R). Hence, b | a in R
by Lemma 2.1. The converse is clear. Now, suppose that R is a ¢-CR and there
isan z € T(R)\ R. Then z = a/b for some a € R and for some b € R\ Z(R) and
b fain R. Hence, a | bin R. Since a | band b € R\ Z(R) and Z(R) is divided by
Proposition 1.1(6), we conclude that a € R\ Z(R). Thus, z~! = b/a € R. O

Corollary 2.3. (1) A ¢-CR 15 a ¢-PVR.
(2) A ¢-CR is a divided ring and hence it is quasilocal.
(3) A K-CR is a K-PVR.
(4) A K-CR is a divided ring and hence it is quasilocal.
(5) A homomorphic image of a ¢-CR is a ¢-CR.
ProoF. (1) and (3). These are clear by the definitions.
(2) and (4). Since a ¢-CR (K-CR) is a ¢-PVR (K-PVR) and a ¢-PVR (K-PVR)
is a divided ring by 18, Proposition 4], the claim follows.
(5). It follows directly from Proposition 2.2. O

In the following result, we construct a ¢-CR of Krull dimension zero that is
not a chained ring.

Proposition 2.4. Let P be a positive prime number and n > 1. Then A :=
Zpn(+)Zpn is a ¢-CR of Krull dimension zero and A is not a chained ring.

PRrooF. By Proposition 1.2(1) it is clear that dim(A) = 0 and M = Nil(A) =
PZpn(+)Zpn is the maximal ideal of A. Hence, M = Nil(A) is a divided prime
ideal of A. Thus, A is a ¢-CR. Finally, it is easy to see that neither of the elements
(P,0) and (0,1) divides the other. Hence, A is not a chained ring. O

To construct a ¢-CR. of Krull dimension > 1 that is not a chained ring, we
need the following result
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Proposition 2.5. [9, Proposition 2.1]. Let D be a valuation domain with maz-
imal ideal M and Krull dimension n, say M = P, D Py1 D ... D Py D {0}
where the P;’s are the distinct prime ideals of D. Let i,m,d > 1 such that
1<i<m<n Choose z € D such that Rad(z) = P;. Let Q := Py, and
J =z Dg and R := D/J. Then:

(1) J is an tdeal of D and Rad(J) = P,.

(2) R is a chained ring with mazimal ideal M/J and Z(R) = Pn/J and

Nil(R) = P;/J. Furthermore, w:=z + J € Nil(R) and w® # 0 in R.
(3) dim(R) =n —i.
(4) Ifi < m < n, then Nil(R) is properly contained between Z(R) and M/J.

In the following result we show that for each n > 1, there is a ¢-CR of Krull
dimension n that is not a chained ring.

Theorem 2.6. For eachn > 1, there is a ¢-CR of Krull dimension n that ts not
a chained ring.

ProoF. By Proposition 2.5, there is a chained ring R of Krull dimension n. Let
B = Ryq(r) as an R-module and set A = R(+)B. It is easy to see that Nil(A) =
Ni(R)(+)B. Since Nil(R) is a prime ideal of R, Nil(A) is a prime ideal of A by
Proposition 1.2(1). We show that Nil(A) is divided. Let (z,b) € Nil(A) for some
z € Nil(R) and for some b € B, and let (y,d) € A\ Nil(A). Theny € R\ Nil(R)
and d € B and x = yf for some f € R. Hence, (z,b) = (f, Qfg—}ﬁé)(y,d). Thus,
(y,d) | (z,b) in A. Hence, Nil(A) is a divided prime ideal of A. To see that A is
not a chained ring: let (0,1) and (z,0) € Nil(A). It is easy to check that neither
one divides the other in A. Hence, A is not a chained ring. Now, we show that
A is a ¢-CR. Let (a,b),(c,d) € A\ Nil(A). Hence, a,c € R\ Nil(R). Thus,
either a | cin Ror ¢ | a in R, say (a,b) | (¢,d). Then ¢ = az for some z € R.
Hence, (¢,d) = (z, élaig)(a, b). Thus, (a,b) | (¢,d) in A. Hence, A is a ¢-CR.
Now, dim(A) = dim{R) = n by Proposition 1.2(1). O

In view of Proposition 2.5 and the proof of Theorem 2.6, we have the following
result.

Corollary 2.7. Let d > 2, and n > 2. Then there is a ¢-CR A with mazimal
ideal M and Krull dimension n that is not a chained ring such that Nil(A) is
properly contained between Z(A) and M, and z¢ # 0 in A for some z € Nil(A).

It is shown in [3, Example 3.16 (c)] that if (I, <) is any set which can be realized
as the spectrum of some valuation domain and m is the minimum element of I, L
is the maximum element of I, and i € I with m < i < L, then there is a chained
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ring (R, M) with Spec(R) order-isomorphic to I, where Nil(R) ¢+ m, Z(R) « i,
and M < L. Hence, in light of this result and the proof of Theorem 2.6, we have
the following result.

Corollary 2.8. Let d > 2 and n > 2. Then there is a ¢-CR A with mazimal
ideal M that is not a chained ring such that dim(A) is infinite, w? # 0(inA) for
some w € Nil(A), and Nil(A) is properly contained between Z(R) and M.

Let R be a ring. We say that B is an overring of R if R C B C T(R). Also,
we say that B is an overring of ¢(R) if $(R) C B C K. For the remaining part of
this section, we state some results that a ¢-CR and its "twin” ring (chained ring)
enjoy.

Proposition 2.9. Let R be a ¢-CR. Then

(1) If B is an overring of R, then B is a $-CR and B = Rp for some prime
ideal P of R such that Z(R) C P.

(2) If B is an overring of ¢(R), then B is a K-CR and B = ¢(R)g for some
prime ideal Q of ¢(R).

PROOF. (1). Let B be an overring of R and let z € K\ ¢(B). Then z € K\ ¢(R).
Hence, 27! € ¢(R). Thus, 27! € ¢(B). Hence, B is a ¢-CR. Now let M be the
maximal ideal of B and P = M N R . Since B is an overring of R, Z(R) ¢ M
and therefore Z(R) € P. Since each s € R\ P is a unit of B, Rp C B. Now,
let + = a/b € B for some a € R and for some b € R\ Z(R). If b | a in R, then
z € Rp. Hence, assume that b fa in R. Then a | b in R. Thus, = = 1/c for some
c€ R\ Z(R). Hence, c is a unit of B. Thus, c € R\ P. Hence, B C Rp. Thus,
B = Rp.

(2). This is clear by an argument similar to the one just given. O

Proposition 2.10. Let R be a ¢-CR. Then R is integrally closed in T(R) and
@{R) is integrally closed in K.

Proor. Let B be the integral closure of R in T(R). Then B = Rp for some
prime ideal P of R such that Z(R) C P by Proposition 2.9(1). Since % is integral
over R for some z € R\ Z(R) if and only if = is a unit of R, we see that P
must be the maximal ideal of R. Hence, R is integrally closed in T(R). A similar
argument shows that ¢(R) is integrally closed in K. O

The following result can be proved by making minor changes in the proof of
[14, Theorem 56, page 36].
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Proposition 2.11. (1) Let I be a proper ideal of ¢(R). Then there exists a
K-CRV such that 6{R)CV C K and IV # V.
(2) If Nil(R) = Z(R) and I is a proper ideal of R, then there exists a ¢-CR
V such that RCV CT(R) and IV # V.

Let I be a proper ideal of R. Then ¢(I) is a proper ideal of ¢(R). Hence,
by the above proposition there exists a K — C'R such that ¢(R) C V C K and

)V #£V.
3. ¢-CRs aND PVRs

Once again, throughout this section R denotes a ring such that Nil(R) is a
divided prime ideal of R. The following two lemmas are needed in this section.

Lemma 3.1. (1) If B,C are ¢-CRs having the same mazimal ideal and
T(B) =T(C), then B = C.
(2) If B,C are overrings of ¢(R) such that B,C are K — CRs having the
same mazimal ideal, then B = C.

ProoF. (1). Suppose that B and C are ¢-CRs having the same maximal ideal
P and T(B) = T(C). We show B = C. Suppose there is an z € C \ B. Then
z7t € Bby Propasit'ion 2.2. Thus, z~! is not a unit in B. Hence, z~' € P which
is impossible, since P is the maximal ideal of C and z € C and ! € P. Hence,
C C B. In a similar way, one can show that B ¢ C. Thus B = C.

(2). We just use a similar argument as in (1}.
|

Lemma 3.2. Let B and C be overrings of R. Then B = C if and only if
¢(B) = ¢(C).

PRrROOF. Suppose that ¢(B) = ¢(C). Let ¢ € C. Then ¢(c) = ¢(b) for some b € B.
Since Nil(R) is a divided prime ideal, Nil(C) = Nil(B) = Nil(R). Hence, we
may assume that neither ¢ is a nilpotent element of C nor b is a nilpotent element
of B. Thus,$(c — b) = 0. Hence, we have ¢ — b € Ker(¢). By [8, Proposition
2(1)], c—be Nil(R) C B. Thus, c € B. Hence, C C B, and we have B = C by
symmetry. O

In the following result, we sharpen [9, Proposition 10]. First, recall that if I is
an ideal of R, then I : I = {& € T(R) : I C I}, and if J is an ideal of ¢(R), then
JiJ={zeK:zJCJ}

Proposition 3.3. Let R be a quasilocal ring with mazimal ideal M. Then:
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(1) Suppose that M contains a nonzerodivisor. Then R is a ¢-PVR if and
only if M : M is a ¢-CR with mazimal ideal M.

(2) ¢(R) is a K-PVR with mazimal ideal ¢(M) if and only if (M) : ¢(M)
is a K-CR with mazimal ideal ¢(M).

PrOOF. (1). Suppose that R is a ¢-PVR with maximal ideal M and there is an
s € M\ Z(R). Then M : M is a ¢-PVR with maximal ideal M by [8, Proposition
10(1)]. Hence, we only need to show that if 2,y € M \ Nil(R), then either z | y
inM:Mory|zin M: M. Suppose that z does not divide y in M : M.
Then = does not divide y in B. Hence, since R is a ¢-PVR, v | zs in R by
Proposition 1.1(6). Thus, zs = yd for some d € R. Suppose that d | s in R.
Then d € R\ Z(R), since s € R\ Z(R). Hence, z | y in R which contradicts our
assumption. Thus, d does not divide s (in R). Hence, s | dm for each m € M.
Thus, %m € R for each m € M. Since d does not divide s in R,-fm € M for each
m € M. Thus, -‘3 eEM: M. Hence,:crzy%. Thusylzin M : M. Thus, M : M
is a ¢-CR. Conversely, suppose that M : M is a ¢-CR with maximal ideal M.
Then M : M is a ¢-PVR with maximal ideal M by Corollary 2.3(1). Hence, R is
a ¢-PVR by [8, Proposition 10(1)].

(2). Suppose that ¢(R) is a K-PVR with maximal ideal ¢(M). Let z € K\¢p(M) :
#(M). Then z71¢(M) C ¢(M) by [8, Lemma 6]. Thus, z7* € ¢(M) : ¢(M).
Hence, ¢(M) : ¢(M) is a K-CR. Conversely, suppose that ¢(M) : ¢(M) is a K-CR
with maximal ideal ¢(M). Then ¢(M) : ¢(M) is a a K-PVR by Corollary 2.3(3).
Hence, ¢(R) is a K-PVR by [8, Proposition 10(2)]. O

Corollary 3.4. (1) Suppose that R is a ¢-PVR with maximal ideal M con-

taining a nonzerodiwvisor of R. Then ¢(M : M) = ¢(M) : ¢(M)(inK).

(2) A quasilocal ring R with mazimal ideal M containing a nonzerodivisor of
R is a ¢-PVR if and only some overring of R is a ¢-CR with mazimal
ideal M.

(3) Let R be quasilocal with mazimal ideal M. Then ¢(R) is a K-PVR if and
only if some overring of ¢(R) is a K-CR with mazimal ideal ideal ¢(M).

(4) If R is quastlocal with mazimal ideal M such that M : M is a ¢-CR, then
R is a ¢-PVR.

PRrOOF. (1). Since ¢(M : M) is a K-CR with maximal ideal (M) by Proposition
3.3(1) and ¢(M) : ¢(M) is a K-CR with maximal ideal ¢(M) by Proposition
3.3(2), o(M : M) = ¢(M) : ¢(M) by Lemma 3.1(2).
(2). Suppose that C is an overring of R with maximal ideal M that is a ¢-CR.
Then ¢(C) = ¢(M : M)(inK) by Lemma 3.1(2). Hence, C = M : M by Lemma
3.2.Thus, the claim is now clear by Proposition 3.3.
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(3). The proof is similar to that in (2).
(4). This is clear by the proof of Proposition 3.3(1). O

Lemma 3.5. Let R be a ¢-PVR, and P be a prime ideal of R. Then z~*P C P
for each z € T(R) \ R.

Proor. Let ¢ = a/b € T(R) \ R for some a € R and for some b € R\ Z(R).
Since b Jfa in R and Z(R) is a divided prime ideal by Proposition 1.1{6), we
conclude that a € R\ Z(R). Hence, 27! = b/a € T(R). Now, let p € P. Then
z(z™'p) = p € P. Hence, ¢(zz™'p) = ¢(z)¢(z7'p) = $(p) € ¢(P). Since
¢(P) is a K-strongly prime ideal of ¢(R) and by Lemma 2.1 ¢(z) &€ ¢(P), we
conclude that ¢(z~1p) € ¢(P). Thus, ¢(z~1p) = ¢(q) for some ¢ € P. Hence,
z71p— g € Ker(¢). Since ¢ € P and Ker(¢) C Nil(R) by [8, Proposition 2(1)]
and Nil(R) C P, we conclude that z=1p € P. O

Proposition 3.6. Let R be a ¢-PVR with mazimal ideal M, and suppose that C
ts an overring of R. The following statements are equivalent:

(1) C contains an element of the form 1/s for some nonzerodivisor s of R.
(2) IC = C for some proper ideal I of R.

ProoF. (1)= (2). Let I = (s). Then IC = C.

(2)= (1). Suppose that C does not contain an element of the form 1/s for some
nonzerodivisor s € R and IC = C for some proper ideal [ of R. Let c € C\ R.
Then ¢! € R. Hence, cM C M by Lemma 3.5. In particular, ¢/ C M. Thus,
IC C M which is a contradiction. Hence, C contains an element of the form 1/s
for some nonzerodivisor s € R. O

The proof of the following lemma is very similar to the proof of the above
proposition and is therefore omitted.

Lemma 3.7. Suppose that ¢(R) is a K«PVR and C is an overring of ¢(R). The
following statements are equivalent:

(1) C contains an element of the form 1/s for some nonzerodivisor s € ¢(R).
(2) IC = C for some proper ideal I of ¢(R).

Proposition 3.8. (1) Let C be an overring of a ¢-PVR R such that IC = C
for some proper ideal I of R. Then C is a ¢-CR.
(2) Suppose that ¢(R) is a K-PVR, and C is an overring of ¢(R) such that
IC = C for some proper ideal I of $(R). Then C is a K-CR.

Proor. (1). By Proposition 3.6, C contains an element of the form 1/s for some
nonzerodivisor s € R. Now, let z,y € C \ Nil(C) and suppose that z does not
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divide y in C. Then, it is easy to check that y | zs in C. Hence, zs = yd for some
d& C. Thus, z = y-‘f and % € Csince 1/s € C. Hence, ylzin C. Thus, Cisa
¢-CR.

(2). In view of Lemma 3.7, we just use a similar argument as in (1). 0

Proposition 3.9. (1) Let P be a nonmazrimal prime ideal of a ¢-PVR R.
Then Rp is a ¢-CR with mazimal ideal PRp.
(2) Let P be a nonwmazimal prime ideal of a ¢-PVR R such that Z(R) C P.
Then Rp = P : P is a ¢-CR with mazimal ideal P.
(3) Suppose that (R) is a K-PVR, and P is a nonmazimal prime ideal of
®{R). Then P: P = ¢(R)p is a K-CR with mazimal ideal P.

Proor. (1). It is clear that PRp is the maximal ideal of Rp. Also, since Ni(R)
is a divided prime ideal of B, Nil(Rp) = Nil(R)Rp is a divided prime ideal of
Rp. Now, let z,y € PRp\Nil{Rp). Thenz =a/s andy = b/s for some a,b € R
and for some s € R\ P. Suppose that x does not divide y in Rp. Then a }bin R.
Since P is nonmaximal, there is a nonunit ¢ € R\ P. Hence, b | ac in R. Thus,
ac = bd for some d € R. Hence, d/c € Rp and a/s = %dc in Bp. Thus, y |z in
Rp.

(2). Since P is a divided prime, P C (z) for each z € R\ P.Thus, z is a unit in
P : P for each z € R\ P. Now, lety e P: P\R. Then y~'P C P by Lemma 3.5.
Hence, y~* € P: P. Thus, y is a unit in P : P. Hence, P is the maximal ideal of
P: P. Since P : P contains an element of the form 1/s for some nonunit s € R,
P : Pis a ¢-CR by Proposition 3.8. Since Rp is a ¢-CR with maximal ideal P
by (1) and P : P is a $-CR with maximal ideal P, Rp = P : P by Lemma 3.1(1).
(3). We just use a similar argument as in (1) and (2). O

In the next result, we show that a ¢-PVR is a pullback of a ¢-CR. If A is aring,
then Maxz(A) denotes the set of all maximal ideal of A. We recall the following
result,

Proposition 3.10. [4, Theorem 3.10] Let D C E be rings. Then Spec(D) =
Spec{E) if and only if Maz(E) C Maz(D).

Proposition 3.11. Let C be a ¢-CR with maximal ideal M, H = C/M its
residue field, o : C — H be the canonical epimorphism, F a subfield of H, and
R = a7 Y(F). Then the pullback R = C xy F is a $-PVR. Moreover, if F is a
proper subfield of H, then R = o™ *(F) is a $-PVR but not a ¢-CR.

Proor. It is clear that M is a maximal ideal of R. Since Maz(C) C Maxz(R),
Spec{R) = Spec(C) by Proposition 3.10. Hence, R is quasilocal with maximal
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ideal M. Since Nil{C) is a divided prime ideal of C, Nil(R) = Nil(C) is a
divided ideal of R. Now, let z,y € R\ Ni({R). By Proposition 1.2(6), we need to
show that either z | y or y | zm for each m € M. Since z,y € C\ Nil(C), either
z|yinCory|zinC. We may assume that z | y in C. Now, if z | y in R,
then we are done. Hence, assume that z does not divide y in R. Since z | y in C,
y = zc for some ¢ in C. Since ¢ & M, c is a unit in C. Thus, yc~! = z. Now, let
m € M. Then y(c™})m = zm. Since ¢™! € C and M is the maximal ideal of C,
¢ *m e M. Thus, y | zm (in R) for each m € M. Hence, R is a ¢-PVR. Now, if
F is a proper subfield of H, then R = a~!(F) is a proper subring of C. Hence,
R is not a ¢-CR by Lemma 3.1. O

In view of Proposition 3.3(1) and the above proposition, we have the following
result.

Corollary 3.12. Let R be quasilocal ring with maximal ideal M such that M
contains a nonzerodivisor of R. Then R is a ¢-PVR if and only if R is a pullback
of a ¢-CR with mazimal ideal M.
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